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Abstract

Background: The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide
to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel
coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected
and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary
compliance by the population. However, humans may act in their (perceived) self-interest only.

Methods: We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization
coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various
behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures,
and they evolve their strategies using a social learning algorithm (imitation dynamics).

Results: This results in complex interplay between the epidemiological model, which affects success of different
strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that
the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of
susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected
individuals is sufficiently high.

Conclusions: To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior
by infected individuals as voluntary self-isolation.
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Background
COVID-19 is a respiratory disease caused by a recently
discovered, novel coronavirus SARS-CoV-2. Since its dis-
covery in Wuhan, China, in 2019, COVID-19 has led to
over 25 million cases globally, over 800 thousand deaths,
and 16 million recovered. Spreading globally, including to
vulnerable countries with challenging healthcare infras-
tructures, the virus is now of international concern and
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has been deemed a pandemic by the World Health Orga-
nization (WHO).
According to COVID-19 data from Johns Hopkins Uni-

versity [1], the United States is currently the epicenter of
the outbreak, with nearly 5 million confirmed cases and
over 180 thousand reported deaths. Additionally, South
America, India, and Africa are experiencing rising in cases
and deaths from the virus. Brazil has over 3 million con-
firmed cases with over 120 thousand deaths; India has
over 3 million confirmed cases with over 62 thousand
deaths; and South Africa has over 600 thousand con-
firmed cases and 13 thousand deaths. These statistics
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point towards a grim realization that the world might be
losing the battle to contain and control the pandemic.
COVID-19 is transmitted person-to-person via respi-

ratory droplets and aerosols or by touching contami-
nated surfaces and objects containing the virus [2]; the
virus can live for hours or days on contaminated sur-
faces and objects [3]. The incubation period for those
exposed to COVID-19 varies from 2 to 12 days [4, 5];
onset of symptoms is often seen earlier in people with
pre-existing health conditions and compromised immune
systems. There is a wide range of symptoms observed
in patients with COVID-19, including fever, shortness
of breath, dry cough, headache, nausea, sore throat,
chest pain, loss of taste or smell, diarrhea, and severe
fatigue [5].
While the risk of severe complications and death from

COVID-19 is higher among the older population and
people with pre-existing conditions, younger adults and
children remain at risk. In China, 90% of children were
asymptomatic and only 5.9% had severe infections (com-
pared to 20% among adults with the disease) [6]. In Italy,
10% of COVID-19 infected people in ICUs are 20–40
years old [7, 8]. Nonetheless, many young people are
not taking the pandemic seriously [8]. In the United
States, there have been numerous examples of young
adults ignoring these warnings and underestimating the
disease risk either to themselves or to older individu-
als around them. For instance, a group of young adults
in Kentucky threw a “Coronovirus Party” [9] and other
gathered in an over-crowded pool party without social
distancing [10].
In the early days of the pandemic, neither vaccines nor

therapeutics were available for this virus, public health
responses require social policies. Various regions have
tried distinct responses including social distancing, school
and event closings, and travel bans. Social distancing
guidelines as suggested by the Centers for Disease Control
and Prevention (CDC) and the World Health Organiza-
tion states that individuals outside their homes should be
six feet apart from all other people and to wear a face
mask at all times. The guidelines further recommend that
people frequently wash their hands for at least 20 sec-
onds, even in their homes, as research has shown that
soap kills the virus and reduces one’s chance of getting
infected [11]. Infected individuals and suspected cases
are quarantined or advised to self-isolate. However, little
is known about best management strategies for limiting
further transmission and spread. Furthermore, the suc-
cess of these preventive measures depend on voluntary
compliance by the population, humans may act in their
(perceived) self-interest only.
Pedro et al. [12] developed a COVID-19 transmission

model that incorporate the support for school and work-
place closure, they found the possibility of second wave of

COVID-19 due to the nonlinear interactions between dis-
ease dynamics and population behaviour. Zhao et al. [13]
in their work showed the possibility to reduce COVID-
19 outbreak through an imitating social learning process,
and individual-level behavioral change. Wei et al. [14]
used evolutationary game analysis to study the inter-
action strategies and actions taken by the government
and public to control the virus, they found that govern-
ment’s initial emergency response to the epidemic can
effectively control the spread of the epidemic. However,
these models used minimal mathematic models that do
not capture other human behavior like quarantine com-
pliance and violation, and impact of these behavioral
responses.
Thus, the objective of this study is to gain insight into

the role of human behavior in modulating the spread and
prevalence of COVID-19. We construct a mathematical
model of COVID-19 transmission with quarantine and
hospitalization, and we couple this model with a dynamic
gamemodel of adaptive human behavior. Susceptible indi-
viduals seek to protect themselves from the infection, and
they consider supporting school and workplace closures.
Infected individuals cannot protect themselves, but they
may try to protect the rest of the population by electing
to self-isolate from other people. Individuals adopt strate-
gies based on the perceived prevalence and burden of
the disease and on sensitivity to the social isolation mea-
sures. Theymay also imitate strategies of other individuals
via a social learning process (imitation dynamics [15]) if
these individuals are more successful according to appro-
priately defined game payoff functions. This results in a
complex interplay between the disease spread and human
behavioral response, which affect each other in a feedback
loop. We try to identify behavioral factors that reduce
the scale of the pandemic, and propose possible mea-
sures to address these factors for the benefit of the entire
society.

Methods
In this study, we develop a novel COVID-19 transmis-
sion model that incorporates dynamic human behavior,
which is driven by various factors. We parameterized the
model using data from the ongoing COVID-19 outbreaks.
To develop this novel game-theoretic model with dynamic
human behavior, we first consider a baseline epidemiolog-
ical model with static human behavior.

Baseline COVID-19 model
We construct a model of COVID-19 transmission with
quarantine and hospitalization. We follow the natural
history of the infection [16, 17] and partition the pop-
ulation according to their disease status as susceptible
(S(t)), exposed (E(t)), asymptomatically infected (A(t)),
symptomatically infected (I(t)), quarantined (Q(t)),
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hospitalized (H(t)), and removed (R(t)) individuals. The
static human behavior in this model is represented by the
constant rate of violating quarantine.
We assume that the population is not affected by birth

and natural mortality because we are modeling short-
term dynamics of the pandemic. We therefore treat com-
partment sizes as proportions of the entire population.
Susceptible individuals become exposed upon contact
with infected individuals, and the force of infection is
given by

λ(t) = β[ I(t) + ηAA(t) + ηQQ(t) + ηHH(t)] ,

where β is the infection rate, ηA are the modifica-
tion parameters representing reduced infectiousness of
asymptomatic individuals. According to the Centers for
Disease Prevention and Control (CDC) asymptomatic
individuals are less infections compare to symptomatic
individuals [18]. The modification parameters ηQ, and ηH
accounts for the variability of the infectiousness of the
quarantined, and hospitalized individuals due to limited
contact with the susceptible individuals [19].
Exposed individuals become infected at the rate σ . A

proportion q of these individuals show no symptoms of
the disease and move to the asymptomatically infected
compartment, while a proportion (1− q) of exposed indi-
viduals develop clinical symptoms of the disease andmove
to the symptomatically infected compartment. Asymp-
tomatic (symptomatic) individuals recover from the dis-
ease at the rate γA (γI) and die at the rate δA (δI ). Symp-
tomatic individuals are hospitalized at the rate ωH . Those
individuals whose condition is not sufficiently severe are
quarantined at the rate ωQ. There have been reports of
people flouting quarantine [20–23], and we assume that
quarantined individuals break the quarantine at the rate
νQ. Quarantined individuals recover from the disease at
the rate γQ and die at the rate δQ.
COVID-19 spreads at an alarming rate, requiring high

rates of hospitalization. Hospitals often become over-
whelmed andmay run out of beds, respirators, ventilators,
and ICUs [24]. Furthermore, some hospitals are reserving
beds for the critically ill COVID-19 patients and discharg-
ing those with less severe illness [25, 26]. We assume that
due to the limitations in hospital capacity, hospitalized
individuals leave the hospitals while still infected at the
rate νH . Hospitalized individuals recover from the disease
at the rate γH and die at the rate δH .
The removed individuals comprise both recovered and

deceased individuals. We disregard the possibility of rein-
fection because we are looking into short-term dynamics
of the disease spread in the population. We therefore
assume that recovered individuals do not contribute to the
spread of the infection.

Table 1 Description of the variables and parameters of the
COVID-19 model (1)

Variable Description

S(t) Proportion of susceptible individuals

E(t) Proportion of exposed individuals

A(t) Proportion of asymptomatically infected
individuals

I(t) Proportion of symptomatically infected
individuals

Q(t) Proportion of quarantined individuals

H(t) Proportion of hospitalized individuals

R(t) Proportion of removed individuals

Parameter Description

β Infection rate

ηA ηQ , ηH Modification parameters for asymptomatic,
quarantined, and hospitalized infection rates

q Proportion of exposed developing
asymptomatic infections

σ Disease progression rate from the exposed
to infectious

γI , γA , γQ , γH Recovery rates of symptomatic,
asymptomatic, quarantined, and
hospitalized individuals

ωQ , ωH Quarantine and hospitalization rates

νQ Quarantine violation rate

νH Hospital discharge rate

δI , δA , δQ , δH Death rates of symptomatic, asymptomatic,
quarantined, and hospitalized individuals

The flow diagram depicting the transitions between
compartments as the disease progresses through the pop-
ulation is shown in Fig. 1, and the associated state vari-
ables and parameters are described in Table 1.
The differential equations describing the dynamics of

this model are given in Eq. 1.

Fig. 1 Flow diagram of the COVID-19 model (1)
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dS
dt

= − β[ I(t) + ηAA(t) + ηQQ(t) + ηHH(t)] S(t)

dE
dt

= β[ I(t) + ηAA(t) + ηQQ(t) + ηHH(t)] S(t) − σE(t)

dA
dt

= qσE(t) − (γA + δA)A(t)

dI
dt

= (1 − q)σE(t) + νQQ(t) + νHH(t) − (ωQ + ωH + γI + δI)I(t)

dQ
dt

= ωQI(t) − (νQ + γQ + δQ)Q(t)

dH
dt

= ωHI(t) − (νH + γH + δH )H(t)

dR
dt

= (γA + δA)A(t) + (γI + δI)I(t) + (γQ + δQ)Q(t)

+ (γH + δH )H(t)

(1)

The associated reproduction number [27, 28] of the
baseline COVID-19 model (1) with quarantine and hospi-
talization, denoted byR0, is given by

R0 = RI + RA, (2)

where

RI = (1 − q)β(k3ηHωH + k4ηQωQ + k3k4)
(k2k3k4 − k3νHωH − k4νQωQ)

and RA = qβηA
k1

,

with k1 = γA + δA, k2 = γI + ωQ + ωH + δI , k3 =
νQ + γQ + δQ, and k4 = νH + γH + δH . The quan-
tity RI is the number of secondary infections produced
by symptomatic individuals, while RA is the number of
secondary infections generated by asymptomatic individ-
uals. Together, the epidemiological quantityR0, measures
the average number of COVID-19 secondary infections
produced when a single infected individual is introduced
into a completely susceptible population [27, 28]. Hence,
COVID-19 can be effectively controlled in the population
if the reproduction number (R0) can be reduced to (and
maintained at) a value less than unity (i.e., R0 < 1). It
should be noted that this model does not exhibite back-
ward bifurcation. If this phenomenon exist, reducing the
basic reproduction number to a value less than unity may
not be a sufficient condition for effective disease control.
Backward bifurcation is known to be caused in models
with vaccination, reinfection, and vector-borne disease
with mortality [29–34], none of these features are present
in this current model.

Parameter estimation andmodel fitting
Here we parameterize the baseline COVID-19 model (1).
We employ two strategies for obtaining the parameter val-
ues: first we obtained the parameter values from literature
(see Table 2). Second, for those parameter not found in
literature, we estimated their values by fitting the COVID-
19 model (1) to the cumulative number of cases data for
Arizona from January 26 to July 6, 2020. The data was
obtained from Johns Hopkins website [1] and fitted using
the classic least-squares method; see Fig. 2 and Table 2

Table 2 Parameters values for the baseline COVID-19 model (1)
fitted to Arizona

Parameter Description Value References

β Infection rate 0.4712 Fitted

ηA Asymptomatic infection
rate modification
parameter

0.45 [18]

ηQ Quarantined infection rate
modification parameter

0.0101 Fitted

ηH Hospitalized infection rate
modification parameter

0.4509 Fitted

q Proportion developing
asymptomatic infections

0.5 [18]

σ Disease progression rate 1/6 [18]

γI Recovery rates of
symptomatic

0.5997 Fitted

γA Recovery rates of
asymptomatic

0.2363 Fitted

γQ Recovery rates of
quarantined

0.3815 Fitted

γH Recovery rates of
hospitalized

0.0107 Fitted

ωQ Quarantine rate 0.5326 Fitted

ωH Hospitalization rate 0.7495 Fitted

νQ Quarantine violation rate 0.4586 Fitted

νH Hospital discharge rate 0.0126 [18]

δI Death rate of symptomatic 0.0065 Fitted

δA Death rate of
asymptomatic

0.00325 Assumed

δQ Death rate of quarantined 0.0065 [18]

δH Death rate of hospitalized 0.0065 [18]

Fig. 2 Fitting the baseline COVID-19 model parameters (1) to Arizona
data of reported cumulative new cases. The COVID-19 outbreaks data
are obtained from Johns Hopkins website [1]
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for their values. Furthermore, the following values were
taken for the initial conditions: the initial total population
was taken as the population at the year 2020, i.e., N(0) =
6, 828, 000; the initially infected individuals as I(0) = 1.
which is the same as the initial number of infected in the
data. We assumed E(0) = 101, A(0) = 100, Q(0) =
0, H(0) = 0 and R(0) = 0, so the initial susceptible are
S(0) = N(0) − E(0) − A(0) − I(0) − Q(0) − H(0) − R(0).
The resulting fitted parameter values are ηA =

0.45, ηQ = 0.0101, ηH = 0.4509, γI = 0.5997, γA =
0.236, γQ = 0.3815, γH = 0.0107, ωQ = 0.5326, ωH =
0.7495, νQ = 0.4586, νH = 0.0126, and δI = 0.0065.
Using these parameter estimates, and parameter values
tabulated in Table 2 we computed the numerical value of
the reproduction numberR0 for the COVID-19 outbreak
in Arizona from January 26 to July 6, 2020 asR0 ≈ 1.84.

Model of dynamic human behavior
In this section, we use the imitation dynamic approach
of evolutionary game theory [35, 36] to model evolv-
ing human behavior in response to the pandemic and its
effect on the spread of the disease.We consider behavioral
response of both susceptible and infected individuals.
Susceptible individuals wish to protect themselves from
getting infected, and they consider supporting social dis-
tancing measures such as school and workplace closures.
On the other hand, conscientious infected individuals
consider self-isolation as means to protect the rest of the
population. We begin by modeling each type of behav-
ior separately, and then we implement both behavioral
responses within our baseline COVID-19 model.

Susceptible individual support for school andworkplace
closure
As the pandemic rages on without any known phar-
maceutical drugs or vaccines, using personal protection
equipment (PPE), washing hands, social distancing, and
economic lock-downs are the measures recommended to
contain and control the disease [37–39]. We adopt the
approach of [12] to model the behavioral response of
the susceptible individuals. The susceptible individuals
have two strategies to choose from: to support closure or
not to support closure; we let xS(t) denote the propor-
tion of susceptible individuals that support closure. The
time-varying function C(t) captures the impact of social
distancing measures such as school and workplace clo-
sure on the transmission of COVID-19. The evolution of
the susceptible and exposed sub-populations with social
distancing becomes

dS
dt

= − β[ 1 − C(t)] [ I(t) + ηAA(t) + ηQQ(t) + ηHH(t)] S(t)

dE
dt

= β[ 1 − C(t)] [ I(t) + ηAA(t) + ηQQ(t) + ηHH(t)] S(t) − σE(t)

(3)

Following [12], we define

C(t) =
{
0 if t < tclose orxS < 1/2
C0 if t ≥ tclose andxS ≥ 1/2

(4)

where C0 is a combined measure of the effectiveness of
physical distancing in those workplaces that remain open
and how many workplaces are closed. The decision to
close schools and workplaces is “turned on” if the time
after the start of the pandemic is at least tclose and at
least half of the (susceptible) population supports closure.
The closure policy is “turned off” if less than half of the
(susceptible) population supports closure.
The susceptible individuals weigh the risk of the infec-

tion based on the disease prevalence and the accumulating
socio-economic losses due to the closures. The suscepti-
ble individuals who do not support school and workplace
closure are willing to face the risk of infection, and their
perceived payoff is given by

E0 = −πS[ I(t) + Q(t) + H(t)] , (5)

where πS is the sensitivity to being infected with COVID-
19 parameter. The susceptible individuals who support
closure efforts face socio-economic losses, and their per-
ceived payoff is given by

E1 = −ρSLS(t), (6)

where ρS is the sensitivity to the accumulated socio-
economic losses LS(t), as in [12].
We now describe how the behavioral responses of sus-

ceptible individuals evolve with time. An individual who
did not support closure but decided to switch its strategy
achieves a payoff gain

�ES = E1−E0 = πS[ I(t)+Q(t)+H(t)]−ρSLS(t). (7)

We assume that individuals employ a social learning
process where they adopt strategies of other individuals
with the rate proportional to the payoff gain, which can
be realized via an imitation dynamic. The proportion of
susceptible individuals who support closure thus evolves
according to

dxS
dt

= κSxS(1 − xS)�ES, (8)

where κS is the social learning rate. The individuals who
do not support closure (1−xS) sample the individuals who
do support closure (xS) and switch their strategy at the
rate proportional to the payoff gain �ES. Using Eq. 7, we
obtain
dxS
dt

= κSxS(1−xS){πS[ I(t)+Q(t)+H(t)]−ρSLS(t)}. (9)
Individuals are thus more likely to support closure if the

prevalence of the infection is high and/or socio-economic
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losses due to the closures are low. On the other hand, due
to the accumulating nature of the socio-economic losses,
individuals are not likely to support closure for too long.
Since scaling payoff functions does not affect the out-

come, we can replace �ES given by (7) with �ES = I(t) +
Q(t) + H(t) − (ρS/πS)LS(t). Then

dxS
dt

= κSxS(1−xS)[ I(t)+Q(t)+H(t)−εSLS(t)] , (10)

where εS = ρS/πS is the sensitivity to the socio-economic
losses relative to getting infected with COVID-19.
Finally, following [12], the evolution of the time-varying

quantity LS(t), which represents the accumulated socio-
economic losses, obeys the exponential fading memory
mechanism given by

dLS
dt

= αSC(t) − ξSLS(t), (11)

where αS controls the rate at which school and workplace
closures impacts socio-economic health of the population,
and ξS is a decay rate that represents adjustment to the
baseline losses.

Infected individual self-isolation
While susceptible individuals seek to avoid getting
infected, the symptomatically infected individuals can-
not help themselves. We thus assume that conscientious
symptomatically infected individuals seek to minimize the
potential damage to the susceptible part of the population.
Since COVID-19 was elevated to pandemic status, self-

isolation and quarantine had been the prescribed non-
pharmaceutical measures aimed at flattening the inci-
dence curve. China (at the peak of infection) instituted
mandatory quarantine of individuals and some parts of
the country [40, 41]. Other countries imposed travel bans
and recommended 14-day quarantines (via self-isolation)
for their citizens who travel to hotspot places [42–44].
However, people break and violate self-isolation and quar-
antine [21, 23] either due to quarantine fatigue or to
other factors such as procuring material needs or limited
opportunities to maintain isolation [45, 46]. Some have
engaged in even more deadly behaviors ignoring policies
and attending large social gatherings [9, 10].
We assume that the symptomatically infected individu-

als who tested positive for COVID-19 and were ordered
to quarantine themselves leave quarantine at a constant
rate νQ. However, symptomatically infected individuals
(I(t)) whose condition was not severe enough to go to
a hospital and/or get tested may elect to self-isolate to
protect others. Let xI(t) be the proportion of symptomat-
ically infected individuals I(t) who elect to self-isolate.
We assume that self-isolated individuals do not contribute
to the spread of the infection, and the force of infec-

tion term involving I(t) becomes (1 − xI(t))I(t). Hence,
the equations for the susceptible and exposed individuals
from the baseline model become

dS
dt

= − β{[ 1 − xI(t)] I(t) + ηAA(t) + ηQQ(t) + ηHH(t)}S(t)
dE
dt

= β{[ 1 − xI(t)] I(t) + ηAA(t) + ηQQ(t) + ηHH(t)}S(t) − σE(t)

(12)

A symptomatically infected individual who elects not to
self-isolate faces the burden of infecting other individuals.
These individuals use the publicly available information
on the COVID-19–induced death rates to estimate the
extent of the burden. We therefore assume that the payoff
of an individual who chooses not to self-isolate is given by

E0 = −πI [ δI I(t) + δQQ(t) + δHH(t)] , (13)

where πI is the sensitivity to infecting others parameter.
On the other hand, an infected individual who decides to
self-isolate faces a fixed cost of such a decision because the
length of self-isolation is approximately equal to the time
it takes to recover. Hence, the payoff of an individual who
chooses to self-isolate is given by

E1 = −ρI , (14)

where ρI is the sensitivity to self-isolation parameter.
Similar to the closure support model described above,

the proportion of symptomatically infected individuals
who elect to self-isolate evolves according to the imitation
dynamic

dxI
dt

= κIxI(1−xI){δI I(t)+δQQ(t)+δHH(t)−εI}, (15)

where κI is the self-isolation social learning rate, and εI =
ρI/πI is the sensitivity to self-isolation relative to infect-
ing others. The (conscientious) infected individuals would
tend to self-isolate if the COVID-19–induced death toll is
high, while they would tend not to self-isolate as long as
the death rates become sufficiently low.

The COVID-19model with combined dynamic behavior
We now combine the two types of adaptive strategic
responses in the population. The susceptible individuals
elect to either support or not support school and work-
place closures, while infected individuals elect to self-
isolate or not to self-isolate. Combining Eqs. 3 and (12)
and replacing the corresponding equations in the base-
line model (1) results in a coupled COVID-19 model with
combined behavioral effects where parts of the popula-
tion adjust their behavior after sampling or learning other
people’s behavior according to the appropriately defined
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payoffs. This coupled disease-behavior system is given by
the following system of ordinary differential equations:

dS
dt

= − β[ 1 − C(t)] [ (1− xI(t))I(t) + ηAA(t) + ηQQ(t)

+ ηHH(t)] S(t)
dE
dt

= β[ 1 − C(t)] [ (1 − xI(t))I(t) + ηAA(t) + ηQQ(t)

+ ηHH(t)] S(t) − σE(t)
dA
dt

= qσE(t) − (γA + δA)A(t)

dI
dt

= (1 − q)σE(t) + νQQ(t) + νHH(t)

− (ωQ + ωH + γI + δI)I(t)
dQ
dt

= ωQI(t) − (νQ + γQ + δQ)Q(t)

dH
dt

= ωHI(t) − (νH + γH + δH)H(t)

dR
dt

= (γA + δA)A(t) + (γI + δI)I(t) + (γQ + δQ)Q(t)

+ (γH + δH)H(t)
dxS
dt

= κSxS(t)(1 − xS(t))[ I(t) + Q(t) + H(t) − εSLS(t)]

dLS
dt

= αsC(t) − ξSLS(t)

dxI
dt

= κIxI(t)(1 − xI(t))[ δI I(t) + δQQ(t) + δHH(t) − εI ]

(16)

The game-theoretic model of dynamic human behavior
state variables and parameters are summarized in Table 3.

Results
Simulating the baseline COVID-19 model
We begin by analysing a baseline model of COVID-
19 transmission with quarantine and hospitalization
(described in Section 6). We then analyze two models of
dynamically adapting human behavior within the baseline
model (described in Section 6): support for school and
workplace closures by susceptible individuals to protect
themselves from infection, and self-isolation by symp-
tomatically infected individuals to protect others from
infection. We analyze the effect of each type of behavior
on the spread and prevalence of COVID-19 separately and
jointly.

Impact of quarantine and hospitalization
Here, we investigate the impact of quarantine and hospi-
talization on the disease transmission. We vary the values
of the quarantine rate ωQ, hospitalization rate ωH , quar-
antine violation rate νQ, early discharge of symptomatic

Table 3 The dynamic human behavior model state variables and
parameters

Variable Description

xS(t) Proportion of susceptible individuals who
support closure

xI(t) Proportion of symptomatically infected
individuals who self-isolate

C(t) Impact of school and workplace closures

LS(t) Accumulated socio-economic losses due to
closures

Parameter Description

κS Support for closure social learning rate

κI Self-isolation social learning rate

εS Sensitivity to socio-economic losses relative
to COVID-19 infection

εI Sensitivity to self-isolation relative to
infecting others

tclose Initial time closures may take effect

C0 Effectiveness of the closure measures

αS Closure impact rate on socio-economic
health

ξS Decay rate for socio-economic losses

infectious individuals from hospitals rate νH , and the
infection rate β in pairs and examine the effect of these
variations on the value ofR0.
Figure 3(a) shows that increasing quarantine and hos-

pitalization rates reduces the value of R0, but the disease
burden is still high because the values of R0 are greater
than one. However, Fig. 3(b) shows that the values of R0
can be kept below 1 as long as the values of β do not
exceed a certain threshold (β ≈ 0.22), and this outcome
does not depend on the quarantine and hospitalization
rates (see also Fig. 4(a) in Appendix A). Using this lower
level of the infection rate, we see in Fig. 4(b) in Appendix A
that R0 can be kept below 1 provided either the quar-
antine rate is above 0.4 or the hospitalization rate is
above 0.2.
If symptomatically infected individuals violate quaran-

tine or are discharged from the hospitals into the commu-
nity due to overwhelmed demand for hospitalizations or
lack of resources, then the disease burden is high and con-
taining the disease becomes challenging as values of R0
are greater than 1 for all values of νQ and νH (see Fig. 5(a)
in Appendix A). The situation is even worse if quarantine
violation is varied along with poor hygiene and disregard
for social distancing, which increases the infection rate β .
Figures 5(b) and 6(a) show thatR0 < 1 as long as the val-
ues of β do not exceed approximately the same threshold
value β ≈ 0.22 as in the case of varying quarantine and
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Fig. 3 Contour plot of the COVID-19 reproduction numberR0 given in Eq. 2. a Varying quarantine rate ωQ and hospitalization rate ωH . b Varying
quarantine rate ωQ and infection rate β

Fig. 4 Contour plot of the COVID-19 reproduction numberR0 given in Eq. (2). a Varying quarantine violation rate νQ and hospital discharge rate νH .
b Varying infection rate β and quarantine violation rate νQ

Fig. 5 Simulation of the baseline COVID-19 model (1) for the proportions of symptomatically infected (I), quarantined (Q), and hospitalized (H)
individuals. Solid lines correspond to base values of the model parameters from Table 2. a Dashed lines correspond to double quarantine
(ωQ = 2 × 0.5326) and hospitalization (ωH = 2 × 0.7495) rates b Dashed lines correspond to double quarantine violation (νQ = 2 × 0.4586) and
hospital discharge (νH = 2 × 0.0126) rates
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Fig. 6 Simulations of the COVID-19 model with dynamic human behavior (16) with various initial proportions xS(0) of the susceptibles in support of
lock-down. The social learning rate of susceptible individuals is κS = 1. a The progression of the proportion of symptomatically infected individuals
I(t). b The progression of the proportion of the susceptible population in support of the closure or lock-down measures. The measures are enacted
as long as t ≥ tclose and xS(t) ≥ 0.5

hospitalization rates. Figure 6(b) in Appendix A shows
that the values ofR0 are below 1 provided the quarantine
violation rate νQ is below 0.7 or the hospital discharge rate
νH is below 0.4. Moreover, R0 < 0.75 if both νQ and νH
are below 0.2.
The results in Figs. 3 and 5 show the importance of

keeping the infection rate β low in order to reduce the dis-
ease burden. This can be achieved by maintaining proper
hygiene (washing hands as recommended), social distanc-
ing, and using facial masks.

Role of quarantined and hospitalized individuals
In this section, we investigate the impact of quarantine
and hospitalization on the proportion of infected individ-
uals that exhibit symptoms of COVID-19. These individ-

uals span three compartments: I, Q, and H. Figure 7(a)
shows the effect of doubling the quarantine (ωQ = 2 ×
0.5326) and hospitalization (ωH = 2 × 0.7495) rates. The
overall number of infections is reduced, and the epidemic
curve is flattened, while the peak of the infection is shifted
to later in time. On the other hand, doubling the quaran-
tine violation (νQ = 2 × 0.4586) and hospital discharge
(νH = 2 × 0.0126) rates results in a higher infection peak
that occurs sooner; see Fig. 7(b). These simulations fur-
ther suggest, as expected, that a larger COVID-19 burden
would be recorded if more people violate the quaran-
tine rules, while increasing the quarantine rate lowers the
disease burden in the community.
In summary, the simulations of the COVID-19 model

(1) with static human behavior show that:

Fig. 7 Simulations of the COVID-19 model with dynamic human behavior (16) with various initial proportions xI(0) of symptomatically infected
individuals willing to self-isolate. The social learning rate of infected individuals is κI = 100, and the sensitivity to self-isolation is εI = 0.00008. a The
progression of the proportion of symptomatically infected individuals I(t). b The progression of the proportion of symptomatically infected
population willing to self-isolate
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(i) Increased quarantine violation and hospital discharge
rates of those still infectious due to overwhelmed
hospital resources increases the disease burden
leading to an early epidemic peak.

(ii) Increasing quarantine and hospitalization rates
decreases the disease burden and reduces the
epidemic peak. Moreover, these measures postpone
the peak of the infection, thus giving more time to
prepare for the coming spike of the disease.

Simulating the COVID-19 model with dynamic human
behavior
Perceived risk of infection drives human behavior and
decisions during an epidemic. These behaviors and deci-
sions are derived from evaluating alternative decisions
and weighing related cost-benefit [47]. In this section,
we analyze the effects of dynamically changing human
behavior by susceptible and symptomatically infected
individuals within the baseline COVID-19 model (1); the
extended model is given by Eqs. 16. Unlike previous
analyzes which focused on how susceptible individuals
change their behavior related to the use and acceptance of
public health protective and preventive control measures
[12, 13, 35, 36, 48], we also consider change in behavior
and decision making of the downstream symptomatically
infected population. The state variables and parameters
associated with the behavioral model are summarized in
Table 3.

Susceptible support for closure
We begin by analyzing the effect of the susceptible indi-
viduals support or opposition of school and workplace
closures. To isolate the effect of susceptible individual
behavior, we assume that κI = 0 and xI(0) = 0, that
is, the symptomatically infected individual behavior is
suppressed. Our modeling approach to the susceptible
individual behavior is derived from [12], and is described
in Section 6. Susceptible individuals seek to avoid get-
ting infected, and they weigh perceived risk of infec-
tion versus the possible socio-economic losses due to
the partial economy shutdown; the socio-economic losses
accumulate over time. We assumed that the decision to
enact appropriate closures stays in effect if and only if a
certain minimum time has passed since the start of the
pandemic and at least half of the susceptible population
supports closures.
In all simulations involving susceptible individual sup-

port for closure, we assume that the effectiveness of clo-
sures is C0 = 0.6 and the initial time the closure decision
may be enacted is tclose = 30 days. Figure 8(a) shows
the effect of dynamically changing susceptible individual
behavior on the progression of the epidemic with different
starting conditions, which capture the initial predisposi-
tion of the population towards such drastic measures as
school and workplace closures.

When the population is initially skeptical about the
closures (xS(0) = 0.15), then it takes a while to build suf-
ficient support for the measure to be enacted (Fig. 8(b),
red line). As a result, the closures take place too late,
and the pandemic reaches its peak early on (Fig. 8(a), red
line). On the other hand, when the population is initially
overenthusiastic about the closures (xS(0) = 0.65), the
measure is enacted too early (Fig. 8(b), green line). How-
ever, the accumulating socio-economic losses due to the
lock-down start to wear people down, and the majority
of the population begins to oppose the lock-down. This
results in a sharp peak of the cases (Fig. 8(a), green line),
which is simply delayed in time. The rise in the prevalence
of infection forces individuals to revert to the lock-down
measures, but this switch in behavior comes too late to
prevent a spike in infections.
The lowest infection peaks are achieved when the pro-

portion of susceptible individuals initially supporting the
closures is neither too low or too high but “just right”
(xS(0) = 0.45). The lock-down is enacted as soon as the
number of cases begins to increase (Fig. 8(a) and (b), blue
lines). The initial epidemic is stifled, and the closure sup-
port drops below the threshold, which results in (partial)
re-openings. However, the number of infected individuals
is still relatively high, and a second bigger wave of infec-
tions occurs. The second wave forces another shutdown,
which persists for a shorter period of time compared to
the first one. This scenario is similar to what has been
happening in the US, and it shows that a second wave
of COVID-19 may result from rational human behav-
ior due to the burden of accumulating socio-economic
losses. This observation matches the results in [12], and
it shows that our extended model with quarantine and
hospitalization still captures the basic features of a simpler
model.
For simplicity, we used only one value of the susceptible

individual social learning rate parameter (κS = 1) here.
We investigate the effects of varying this parameter when
we analyze a coupled model of susceptible and infected
individual behavior. In particular, faster social learning
rates may result in multiple waves of infection.

Symptomatically infected self-isolation
We now analyze the effect of voluntary decisions to
self-isolate by symptomatically infected individuals. We
assume that κS = 0 and xS(0) = 0 so that suscepti-
ble individual support for closure behavior is suppressed.
Our modeling approach to symptomatically infected indi-
vidual behavior is described in Section 6 Unlike sus-
ceptible individuals, who seek to protect themselves
from the infection, infected individuals cannot protect
themselves—they are already infected. However, consci-
entious individuals may wish to protect the rest of the
population from getting infected; these individuals weigh
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Fig. 8 Simulations of the COVID-19 model with dynamic human behavior (16) for the proportions of all symptomatic infections and behavioral
response with low sensitivity to self-isolation εI = 0.00001. The social learning rates are κS = 1 and κI = 100, and xS(0) = xI(0) = 0.15. Solid lines
correspond to the values of the baseline model parameters given in Table 2. a–b Dashed lines correspond to double quarantine (ωQ) and
hospitalization (ωH) rates c–d Dashed lines correspond to double quarantine violation (νQ) and hospital discharge (νH) rates

the perceived burden of infecting others versus the incon-
venience and cost of self-isolation.
Figure 9(a) shows the impact of dynamically changing

infected individual behavior to self-isolate or not self-
isolate on the progression of the epidemic. At the onset
of the epidemic, when the number of cases and fatalities
is relatively small, infected individuals would tend not to
engage in voluntary self-isolation (Fig. 9(b)). As the num-
ber of infections—and hence disease-induced deaths—
grows, the burden on the susceptible population becomes
larger, and the infected individuals aremore willing to self-
isolate to protect others. The initial predisposition of the
population to the altruistic act of self-isolation determines
the peak of the epidemic and its timing (Fig. 9(a)). The
more individuals are willing to self-isolate, the lower the
peak and the later it occurs.
We considered one set of fixed values of the symptomat-

ically infected individual social learning rate parameter
κI and the sensitivity to self-isolation parameter εI . We
investigate the effects of varying these parameters in a full
behavioral model. In particular, lowering the sensitivity to

self-isolation results in bigger and more sustained support
of self-isolation.

Human behavior coupled with quarantine and
hospitalization
In this section, we consider the full behavioral model,
where both susceptible and symptomatically infected
individuals adjust their behavior in response to the epi-
demic. We initialize the model simulations with only
15% of the susceptible population supporting closure and
15% of the symptomatic population willing to self-isolate,
which correspond to the worst-case scenarios considered
in Figs. 8(b) and 9(b).
Figure 10 shows the results of the simulation with vary-

ing quarantine (ωQ), hospitalization (ωH ), quarantine vio-
lation (νQ), and hospital discharge (νH ) rates. The peak of
the epidemic is lower and shifted to the right in time with
higher quarantine and hospitalization rates (Fig. 10(a)),
while an opposite effect is achieved with higher quaran-
tine violation and hospital discharge rates (Fig. 10(c)). The
population behavioral response is informed by the severity
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Fig. 9 Simulations of the COVID-19 model with dynamic human behavior (16) showing multiple waves of epidemic while varying susceptible (κS)
and symptomatic (κI) individual social learning rates with low sensitivity to self-isolation εI = 0.00001. Solid lines correspond to κI = 20, dashed
lines correspond to κI = 650. a Proportion of symptomatic infections I(t) with one big and two smaller waves (solid lines), κS = 10. b Proportion of
susceptible (xS) and symptomatic (xI) individuals adopting positive behavior, κS = 10. c Proportion of symptomatic infections I(t) with two big and
one small wave (solid lines), κS = 30. d Proportion of susceptible (xS) and symptomatic (xI) individuals adopting positive behavior, κS = 30

Fig. 10 Simulations of the COVID-19 model with dynamic human behavior (16) showing epidemic oscillations with high self-isolation social
learning rate. Solid lines correspond to κI = 650, dashed lines correspond to κI = 1350; fixed values κS = 5 and εI = 0.00001. a Oscillating
proportion of symptomatic infections I(t). b Proportion of susceptible (xS) and symptomatic (xI) individuals adopting positive behavior
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of the epidemic: higher prevalence of the disease results
in larger proportions of individuals supporting closure or
willing to self-isolate (Fig. 10(b) and (d)).
Figure 10 illustrates the importance of discouraging

disease-magnifying behavior such as violating and break-
ing quarantine laws. Moreover, lower sensitivity to self-
isolation (εI = 0.00001 in Fig. 10 compared to εI =
0.00008 in Fig. 11 given in Appendix B) allows the self-
isolating behavior to persist for a longer period of time
(compare Fig. 10(b) with 11(b) and Fig. 10(d) with 11(d))
thus effectively reducing the burden of the infection on
the susceptible part of the population (compare Fig. 10(a)
with 11(a) and Fig. 10(c) with 11(c)). It is therefore impor-
tant to encourage and incentivize such exemplary behav-
ior by infected individuals.

Multiple waves of infections
In this section, we demonstrate the possibility of multiple
waves of infection as a consequence of modifying the rates
of behavioral response to the emerging epidemic condi-
tions. The rates of behavioral response are controlled by
the social learning rate parameters κS and κI for suscepti-
ble and symptomatically infected individuals, respectively,
in the imitation dynamics model. Higher values of these
parameters mean individuals imitate the behavior of other
individuals, who are more successful according to the
dynamic game payoffs, more eagerly. This effects quicker
response to the evolving conditions, which may result in
multiple oscillations of both the behavioral response and
infections curves.
In general, we assumed that κS < κI because supporting

school and workplace closures usually carries bigger con-
cessions than self-isolation. For example, individuals who
can continue working remotely are more likely to support

such measures, while individuals who will lose their jobs
while part of the economy is shut down are less likely to
support measures that may result in loss or reduction of
their income. Therefore, susceptible individuals may have
different sensitivity to the socio-economic losses, and that
is why we assumed that the social learning rate κS for clo-
sure support behavior is lower than that for self-isolating
behavior (κI ).
Figure 12 shows that increasing the support closure

behavior social learning rate κS produces oscillations in
the behavioral response and hence in the prevalence of
the disease. For higher values (κS = 30, see Fig. 12(c)), we
observe two waves of infections of similar magnitude. On
the other hand, simultaneous increase in the self-isolation
behavior social learning rate (κI = 650) coupled with low
sensitivity to self-isolation (εI = 0.00001) allows the pop-
ulation to overcome a second large wave of the pandemic
by responding quickly and decidedly to the first big wave
(see dashed lines in all panes of Fig. 12). Still, increasing
the self-isolation social learning rate parameter does not
prevent a second large wave of the pandemic if the popu-
lation sensitivity to self-isolation is higher (εI = 0.00008),
see Fig. 13 in Appendix C.
Multiple waves of infection of similar magnitude may

occur if the closure support social learning rate is low
(κS = 5) while the self-isolation social learning rate is
high (κI = 1350) and sensitivity to self-isolation is low
(εI = 0.00001); see Fig. 14. This may seem counter-
intuitive because higher willingness to self-isolate should
ideally result in quick suppression of a spike in disease. At
the same time, with high sensitivity to the epidemiolog-
ical situation, individuals switch back to non-compliance
as soon as the situation improves but well before the dis-
ease prevalence is reduced to negligible numbers. This,

Fig. 11 Simulations of the COVID-19 model with dynamic human behavior (16) showing the damping effect of increased quarantine (ωQ) and
hospitalization (ωH) rates. Solid lines correspond to base values of ωQ and ωH , dashed lines correspond to a 5-fold increase in these values; fixed
values κS = 5, κI = 1350, and εI = 0.00001. a Proportion of symptomatic infections I(t). b Proportion of susceptible (xS) and symptomatic (xI)
individuals adopting positive behavior
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Fig. 12 Simulations of the COVID-19 model with dynamic human behavior (16) showing the devastating effect of increased quarantine violation
(νQ) and hospital discharge (νH) rates. Solid lines correspond to base values of νQ and νH , dashed lines correspond to an 8-fold increase in these
values; fixed values κS = 5, κI = 650, and εI = 0.00001. a Proportion of symptomatic infections I(t). b Proportion of susceptible (xS) and
symptomatic (xI) individuals adopting positive behavior

in turn, results in a new spike of infections. We note that
this phenomenon is amplified by the presence of quaran-
tine violation in our model because quarantine violation
often results in outbreaks [49]. When the quarantine vio-
lation rate νQ is set to zero, we no longer observe multiple
epidemic waves of such magnitude.
Figures 12 and 14 show the possibility of multiple epi-

demic waves or an epidemic with several oscillations. We
have seen that the persistence of these waves is due to
the high rate of social learning behavior of the susceptible
or symptomatically infected individuals in the commu-
nity or the violation of the quarantine rules. We will now
explore in more detail the impact of increased quarantine
and quarantine violation rates on the multiple epidemic
waves. We will couple this with varying hospitalization
and hospital discharge rates.
Figure 15 shows that increasing the quarantine and

hospitalization rates prevents future waves of infection.
This is achieved by dampening multiple oscillations in
the behavior of symptomatically infected individuals and
prolonged support for lock-down measures.
Lastly, we investigate the impact of increased quarantine

violation and hospital discharge rates onmultiple waves of
infection. We see from Fig. 16 that increasing quarantine
violation and hospital discharge rates produces multi-
ple epidemic peaks of larger magnitude. Higher initial
prevalence of the disease (Fig. 16(a) dashed line) causes
multiple oscillations in self-isolating behavior (Fig. 16(b))
and hence future waves of infection.
The take home-message from the results presented in

Figs. 15 and 16 is that increased hospitalization and quar-
antine rates can help diminish future infection waves and
could even lead to the disappearance of a second large
wave. However, frequent quarantine violation and early
hospital discharge of those still infectious may lead to per-

sistent prevalence of the disease with regular spikes in the
number of cases.
In summary, the simulations of the COVID-19 model

with dynamic human behavior (16) show that:

(i) Symptomatic individuals learning and mimicking
self-isolating behavior reduces the disease burden in
the population but can lead to multiple epidemic
waves if fewer susceptible individuals mimic and
learn closure support behavior.

(ii) Quarantine violation and hospital discharge of
symptomatic individuals amplifies the peaks of the
infection waves and can lead to infection waves that
persist in the community.

(iii) Increasing quarantine and hospitalization rates can
prevent multiple waves of infection.

(iv) It is important to incentivize the cost and burden of
self-isolation to encourage more symptomatic
individuals to self-isolate because high sensitivity to
self-isolation is not beneficial to the community as a
whole.

Discussion
We constructed a novel compartmental model of COVID-
19 transmission, which includes compartments for quar-
antined and hospitalized individuals; see Fig. 1 and Eqs. 1.
We coupled this model with a game-theoretic model of
dynamically changing human behavior in Eqs. 16. The
susceptible individuals choose to either support school
and workplace closures or not, and their strategic choices
are driven by the perceived risk of getting infected versus
the sensitivity of possible socio-economic losses due to the
(partial) lock-down. The symptomatically infected indi-
viduals consider protecting the rest of the population by
self-isolating from society; they base their decisions on the
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perceived burden of the disease versus the burden of social
isolation.
We also investigated the effects of quarantine violation

due to social non-compliance and early hospital discharge
due to shortage of resources. Increasing the rates of quar-
antine violation and hospital discharge results in a higher
peak of the pandemic, which occurs earlier (Fig. 7) and
hence could be more devastating. At the height of the
outbreak in Michigan and New York, hospitals were dis-
charging early the not-too-critically ill either to nursing
homes or simply letting them go home because hospital
facilities were overwhelmed [50, 51]. This prompted leg-
islation in Michigan to protect the seniors and vulnerable
members of the community and prevent nursing homes
from admitting patients with COVID-19 [52]. In other
places like Arizona, some nursing homes are actually
taking COVID-19 patients with mild symptoms [53].
To reduce the disease burden in the community, it is

important to keep the infection rate β low (approximately
0.22). This can be achieved by maintaining proper hygiene
(frequently washing hands for 20 seconds), social distanc-
ing, and wearing facial masks. Unfortunately, the use of
facial masks has become a polarizing topic in the United
States, resulting in shaming, and violence [54–57]. Never-
theless, the science behind the use of facial masks shows
that the use of surgical masks prevent the dispersal and
transmission of COVID-19 droplets and aerosols [58–
60], and hence using facial masks is one of the critical
measures in combating the pandemic.
Figures 8 and 9, which demonstrate the effect of

dynamic behavior by susceptible and symptomatically
infected individuals respectively, show that preventing the
symptomatic infectious from spreading the disease is as
important as preventing the susceptible population from
getting the infection. When the behavior of susceptible
and symptomatically infected individuals was analyzed
separately from each other, it turned out that the peak
of the epidemic curve generated by symptomatic infec-
tions willing to self-isolate was lower than the peak of the
epidemic curve generated by the susceptibles who are in
support of the lock-down or closure measures. Thus, it
is essential to prevent people from violating quarantine
and social isolation rules especially as young people have
been throwing “coronavirus parties” [9]. These parties are
hosted either to defy social distancing rules or to get
infected in hope to possibly build up immunity against the
virus or simply because some people still think the virus is
a hoax [9, 61].
One of our key findings is the possibility of multiple

waves of infections due to rational human behavior. We
saw in Fig. 14 that these waves can persist when the
rate of social learning of infected individuals is too high
and their sensitivity to self-isolation is low. In this case,
the infected individuals switch their behavior from self-

isolating to not self-isolating while the prevalence of the
infection is still relatively high; this results in a next wave
of infections. The population quickly recognizes this shift
in the state of the pandemic, and starts to self-isolate more
often, thus suppressing this wave and repeating the cycle
several times. On the other hand, the effect of such sen-
sitive behavior can be mitigated by increasing quarantine
and hospitalization rates (Fig. 15).
Our key findings further show that when the symp-

tomatic infectious population learn the positive behavior
or are more willing to self-isolate, the community ben-
efits, even though this change in behavior comes at a
cost to them. Self-isolation often comes with financial
implications and distress; not very many people can bear
these burdens. Hence, it is important to incentivize self-
isolation of the symptomatic infectious population as
many infected people will rather stay home than go to
work since staying at home will help the public good and
create an opportunity to help save more lives [62]. One
way to incentivize the symptomatic infectious is to pay
them to stay home, perhaps via direct government subsi-
dies for sick leave for infected individuals [62]. Our result
shows that infection in the community will reduce par-
ticularly if the associated cost of self-isolation is cheap.
If this cost is high and people keep violating quarantine
rules, the infection could run away and become a persis-
tent recurrent infection in the community, as shown in
Figs. 14–16.
We assumed that sensitivity to societal isolation mea-

sures was constant. However, public perception of these
measures as necessary for the common good may change
with time. For example, it may become a social norm to
self-isolate in the face of a pandemic, and in this case
infected individuals are more willing to isolate themselves
from the rest of the population. A future iteration of
this model should consider the effect of evolving public
perception of the social stigma for those who refuse to
self-isolate.We also considered the quarantine violation as
a static feature of the model. However, the quarantine vio-
lation behavior may evolve with time just as self-isolating
behavior. Constructing a dynamic gamemodel of evolving
quarantine violation behavior could involve an adaptive
dynamic approach.
Additional concerns should be given to the ability to

self-isolate. Proscriptive guidelines and current policies
often fail to recognize that certain populations are less
able or willing to stay at home due to compromised
living situations, financial limitations, or precarious eco-
nomic opportunities. Further approaches should consider
how individual behaviors vary across key socioecomic and
demographic population characteristics.
While we have used this modeling work to gain

insight into the impact of human behavior on the spread
of COVID-19 and the emergence of multiple wave of
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infections; as an additional future work, we would use
these models to identify crucial quantities like the thresh-
old value(s) that could potentially lead to disease eradica-
tion or prevention of future waves of infection.

Conclusions
The goal of this study was to provide insight into possible
effects of human behavior on non-pharmaceutical inter-
vention strategies (such as partial lock-down and social
isolation) aimed at containing the spread of COVID-
19. Standard epidemiological models neglect human
behavior, yet it is a major factor for studying COVID-
19 transmission while there are no known pharmaceuti-
cal solutions. We showed that in certain circumstances
rational human behavior may result in multiple waves of
the pandemic, which persist for a long period of time.
Finally. we summarize our results according to whether

human behavior is static or dynamic driven by public per-
ception of risk of the infection and sensitivity to isolation
measures.

(a) The simulations of the COVID-19 model (1) with
static human behavior (constant quarantine violation
rate) show that:

(i) Increased quarantine violation and discharge
rates of those still infectious due to
overwhelmed hospital resources results in
greater disease burden leading to an early
epidemic peak.

(ii) Increasing quarantine and hospitalization
rates reduces the disease burden and the
epidemic peak.

(b) The simulations of the COVID-19 model (16) with
dynamic human behavior show that:

(i) Symptomatic individuals learning and
mimicking positive behavior reduces the
disease burden in the population but can lead
to multiple epidemic waves if fewer susceptible
individuals mimic and learn positive behavior.

(ii) Quarantine violation and hospital discharge of
symptomatic individuals amplifies the peaks of
the infection waves and can lead to infection
waves that persist in the community.

(iii) Increasing quarantine and hospitalization
rates can prevent multiple waves of infection.

(iv) It is important to incentivize the burden of
self-isolation to encourage more symptomatic
infectious to self-isolate because high cost of
self-isolation is not beneficial to the infectious
nor to the community as a whole.

Overall, our results emphasize the importance of diverse
steps that could be implemented that would incentivize
and support responsible behavior by individuals. This
might involve positive reinforcement, such as subsidies
and economic support, or negative consequences, such as
penalties and fines for those not obeying and following
appropriate behavioral norms.

Appendix
Appendix A: Contour plots of the COVID-19 reproduction
numberR0

Fig. 13 Contour plot of the COVID-19 reproduction numberR0 given in Eq. (2). a Varying hospitalization rate ωH and infection rate β . b Varying
quarantine rate ωQ and hospitalization rate ωH using infection rate β = 0.22
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Fig. 14 Contour plot of the COVID-19 reproduction numberR0 given in Eq. (2). a Varying quarantine violation rate νQ and infection rate β . b
Varying quarantine violation rate νQ and hospital discharge rate νH using infection rate β = 0.22

Appendix B: Impact of high cost self-isolation (εI) on symptomatic infectious
Here we show the simulation results for all symptomatic infections with high sensitivity to self-isolation εI = 0.00008.

Fig. 15 Simulations of the COVID-19 model with dynamic human behavior (16) for the proportions of all symptomatic infections and behavioral
response with high sensitivity to self-isolation εI = 0.00008. The social learning rates are κS = 1 and κI = 100, and xS(0) = xI(0) = 0.15. Solid lines
correspond to the values of the baseline model parameters given in Table 2. a–b Dashed lines correspond to double quarantine (ωQ) and
hospitalization (ωH) rates c–d Dashed lines correspond to double quarantine violation (νQ) and hospital discharge (νH) rates
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Appendix C: The impact of symptomatic social learning rates κI

Here we show the simulation results of varying symptomatically infected individuals social learning rate κI with high
sensitivity to self-isolation εI = 0.00008.

Fig. 16 Simulations of the COVID-19 model with dynamic human behavior (16) for the proportions of all symptomatic infections and behavioral
response with high sensitivity to self-isolation εI = 0.00008. Solid lines correspond to κI = 20, dashed lines correspond to κI = 650. a–b κS = 10;
c–d κS = 30
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